
THE INTEGRAL AND COMPARISON TESTS

EXAMPLE A Test the series for convergence or divergence.

SOLUTION The function is continuous, positive, and decreasing
on so we use the Integral Test:

Thus, is a convergent integral and so, by the Integral Test, the
series is convergent. ■

EXAMPLE B Determine whether the series converges or diverges.

SOLUTION The dominant part of the numerator is and the dominant part of the
denominator is . This suggests taking

Since is divergent ( -series with ), the given series
diverges by the Limit Comparison Test. ■
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