## 8.3 THE INTEGRAL AND COMPARISON TESTS

**EXAMPLE A** Test the series  $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$  for convergence or divergence.

**SOLUTION** The function  $f(x) = 1/(x^2 + 1)$  is continuous, positive, and decreasing on  $[1, \infty)$  so we use the Integral Test:

$$\int_{1}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \tan^{-1} x \Big]_{1}^{t}$$
$$= \lim_{t \to \infty} \left( \tan^{-1} t - \frac{\pi}{4} \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

Thus,  $\int_{1}^{\infty} 1/(x^2 + 1) dx$  is a convergent integral and so, by the Integral Test, the series  $\sum 1/(n^2 + 1)$  is convergent.

**EXAMPLE B** Determine whether the series  $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}}$  converges or diverges.

**SOLUTION** The dominant part of the numerator is  $2n^2$  and the dominant part of the denominator is  $\sqrt{n^5} = n^{5/2}$ . This suggests taking

$$a_n = \frac{2n^2 + 3n}{\sqrt{5 + n^5}} \qquad b_n = \frac{2n^2}{n^{5/2}} = \frac{2}{n^{1/2}}$$
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2n^2 + 3n}{\sqrt{5 + n^5}} \cdot \frac{n^{1/2}}{2} = \lim_{n \to \infty} \frac{2n^{5/2} + 3n^{3/2}}{2\sqrt{5 + n^5}}$$
$$= \lim_{n \to \infty} \frac{2 + \frac{3}{n}}{2\sqrt{\frac{5}{n^5} + 1}} = \frac{2 + 0}{2\sqrt{0 + 1}} = 1$$

Since  $\sum b_n = 2 \sum 1/n^{1/2}$  is divergent (*p*-series with  $p = \frac{1}{2} < 1$ ), the given series diverges by the Limit Comparison Test.